service backend
All checks were successful
ci/woodpecker/push/db Pipeline was successful
ci/woodpecker/push/nats Pipeline was successful

This commit is contained in:
Stephan D
2025-11-07 18:35:26 +01:00
parent 20e8f9acc4
commit 62a6631b9a
537 changed files with 48453 additions and 0 deletions

161
api/pkg/decimal/rational.go Normal file
View File

@@ -0,0 +1,161 @@
package decimal
import (
"math/big"
"strings"
"github.com/tech/sendico/pkg/merrors"
)
// RatFromString parses a decimal string into a big.Rat
// Supports standard decimal notation like "123.45", "-0.001", etc.
func RatFromString(value string) (*big.Rat, error) {
if strings.TrimSpace(value) == "" {
return nil, merrors.InvalidArgument("decimal: empty value")
}
r := new(big.Rat)
if _, ok := r.SetString(value); !ok {
return nil, merrors.InvalidArgument("decimal: invalid decimal value: " + value)
}
return r, nil
}
// MulRat multiplies two rational numbers
func MulRat(a, b *big.Rat) *big.Rat {
return new(big.Rat).Mul(a, b)
}
// DivRat divides two rational numbers
func DivRat(a, b *big.Rat) (*big.Rat, error) {
if b.Sign() == 0 {
return nil, merrors.InvalidArgument("decimal: division by zero")
}
return new(big.Rat).Quo(a, b), nil
}
// AddRat adds two rational numbers
func AddRat(a, b *big.Rat) *big.Rat {
return new(big.Rat).Add(a, b)
}
// SubRat subtracts two rational numbers (a - b)
func SubRat(a, b *big.Rat) *big.Rat {
return new(big.Rat).Sub(a, b)
}
// NegRat negates a rational number
func NegRat(a *big.Rat) *big.Rat {
return new(big.Rat).Neg(a)
}
// RoundRatToScale rounds a rational number to a specific number of decimal places
// using the specified rounding mode
func RoundRatToScale(value *big.Rat, scale uint32, mode RoundingMode) (*big.Rat, error) {
scaleFactor := new(big.Int).Exp(big.NewInt(10), big.NewInt(int64(scale)), nil)
numerator := new(big.Int).Mul(new(big.Int).Set(value.Num()), scaleFactor)
denominator := value.Denom()
quotient := new(big.Int)
remainder := new(big.Int)
quotient.QuoRem(numerator, denominator, remainder)
// No remainder, already exact
if remainder.Sign() == 0 {
return new(big.Rat).SetFrac(quotient, scaleFactor), nil
}
sign := quotient.Sign()
absQuotient := new(big.Int).Abs(new(big.Int).Set(quotient))
absRemainder := new(big.Int).Abs(remainder)
absDenominator := new(big.Int).Abs(denominator)
doubledRemainder := new(big.Int).Mul(absRemainder, big.NewInt(2))
cmp := doubledRemainder.Cmp(absDenominator)
shouldIncrement := false
switch mode {
case RoundingModeDown:
shouldIncrement = false
case RoundingModeHalfUp:
if cmp >= 0 {
shouldIncrement = true
}
case RoundingModeHalfEven, RoundingModeUnspecified:
if cmp > 0 {
shouldIncrement = true
} else if cmp == 0 {
// Tie: round to even
if absQuotient.Bit(0) == 1 {
shouldIncrement = true
}
}
default:
// Default to HALF_EVEN
if cmp > 0 {
shouldIncrement = true
} else if cmp == 0 {
if absQuotient.Bit(0) == 1 {
shouldIncrement = true
}
}
}
if shouldIncrement {
if sign < 0 {
absQuotient.Add(absQuotient, big.NewInt(1))
quotient = absQuotient.Neg(absQuotient)
} else {
absQuotient.Add(absQuotient, big.NewInt(1))
quotient = absQuotient
}
}
return new(big.Rat).SetFrac(quotient, scaleFactor), nil
}
// FormatRat formats a rational number as a decimal string with the specified scale
func FormatRat(r *big.Rat, scale uint32) string {
sign := ""
if r.Sign() < 0 {
sign = "-"
}
absRat := new(big.Rat).Abs(r)
scaleFactor := new(big.Int).Exp(big.NewInt(10), big.NewInt(int64(scale)), nil)
numerator := new(big.Int).Mul(absRat.Num(), scaleFactor)
numerator.Quo(numerator, absRat.Denom())
intStr := numerator.String()
if scale == 0 {
return sign + intStr
}
if len(intStr) <= int(scale) {
intStr = strings.Repeat("0", int(scale)-len(intStr)+1) + intStr
}
pointPos := len(intStr) - int(scale)
return sign + intStr[:pointPos] + "." + intStr[pointPos:]
}
// CmpRat compares two rational numbers
// Returns -1 if a < b, 0 if a == b, 1 if a > b
func CmpRat(a, b *big.Rat) int {
return a.Cmp(b)
}
// IsZero checks if a rational number is zero
func IsZero(r *big.Rat) bool {
return r.Sign() == 0
}
// IsPositive checks if a rational number is positive
func IsPositive(r *big.Rat) bool {
return r.Sign() > 0
}
// IsNegative checks if a rational number is negative
func IsNegative(r *big.Rat) bool {
return r.Sign() < 0
}